Приложение к Основной образовательной программе среднего общего образования муниципального казенного общеобразовательного учреждения «Шадринская средняя общеобразовательная школа», утвержденной 03 марта 2020 года приказом №31

РАБОЧАЯ ПРОГРАММА ПО МАТЕМАТИКЕ (углублённый уровень) В 10-11 КЛАССАХ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по математике (углублённый уровень) в 10-11 классах создана в соответствии с требованиями:

- Федерального закона «Об образовании в Российской Федерации» (№ 273-Ф3
- «Об образовании в Российской Федерации») от 29.12.2012(редакция от 06.03.2019г.с изменениями и дополнениями, вступившими в силу),
- -Федерального государственного образовательного стандарта среднего общего образования (Приказ Министерства образования и науки Российской Федерации (Минобрнауки России) от 17мая 2012 г. № 413 " Об утверждении и введении в действие федерального государственного образовательного стандарта среднего общего образования") с изменениями и дополнениями от 29 декабря 2014 г., № 1645, декабря 2015 г., 29 июня 2017 г.; на основе:
- авторской программы к учебному комплексу для 10-11 классов А.Г. Мордковича и др. «Алгебра и начала математического анализа 10 класс,11 класс» из сборника «Программы. Алгебра и начала анализа 10-11 классы./авт.- сост. И.И. Зубарева, А.Г. Мордкович. -М.: Мнемозина 2011»,
- авторской программы Атанасяна А.С. «Геометрия 10-11 класс» из сборника «Геометрия. Программы общеобразовательных учреждений.10-11 классы/авт.- сост. Т.А. Бурмистрова_-М. Просвещение 2010» , утвержденных приказом Минобразования РФ № 1312 от 09.03.2004 года; -учебного плана МКОУ «Шадринская СОШ»;
- ${\rm M}$ является приложением к основной образовательной программе среднего общего образования MKOУ «Шадринская COШ».

Для реализации рабочей программы используется учебно-методический комплект (УМК):

- А.Г. Мордкович, П.В. Семёнови др. Алгебра и начала математического анализа. 10 класс. Учебник для общеобразовательных организаций (базовый и углублённый уровни). М.: Мнемозина, 2019.
- А.Г. Мордкович, П.В. Семёнов и др. Алгебра и начала математического анализа. 11 класс. Учебник для общеобразовательных организаций (базовый и углублённый уровни). М.: Мнемозина, 2019.
- Л.С. Атанасян и др. Геометрия 10-11. Учебник для общеобразовательных учреждений. Базовый уровень М.: Просвещение, 2018.
- В.Ф. Бутузов, Ю.А. Глазков, И. И. Юдина Геометрия. 10 класс. Рабочая тетрадь. Учебное пособие для общеобразовательных учреждений (базовый и углублённый уровни). М.: Просвещение, 2019.
- В.Ф. Бутузов, Ю.А. Глазков, И. И. Юдина Геометрия.11 класс. Рабочая тетрадь. Учебное пособие для общеобразовательных учреждений (базовый и углублённый уровни). М.: Просвещение, 2019.

Изучение математики на уровне среднего образования на углублённом уровне направлено на достижение следующих **целей**:

- формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;
- овладение устным и письменным математическим языком, математическими знаниями и умениями, необходимыми для изучения школьных естественнонаучных дисциплин, для продолжения образования и освоения избранной специальности на современном уровне;
- развитие логического мышления, алгоритмической культуры, пространственного воображения, развитие математического мышления и интуиции, творческих способностей на уровне, необходимом для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности;
- -воспитание средствами математики культуры личности: знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного прогресса.
- В ходе изучения математики на углублённом уровне уровня среднего образования обучающиеся продолжают овладение разнообразными способами деятельности, приобретают и совершенствуют опыт:

- проведения доказательных рассуждений, логического обоснования выводов, использования различных языков математики для иллюстрации, интерпретации, аргументации и доказательства:
- решения широкого класса задач из различных разделов курса, поисковой и творческой деятельности при решении задач повышенной сложности и нетиповых задач;
- планирования и осуществления алгоритмической деятельности: выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; использования и самостоятельного составления формул на основе обобщения частных случаев и результатов эксперимента; выполнения расчетов практического характера;
- построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин и реальной жизни; проверки и оценки результатов своей работы, соотнесения их с поставленной задачей, с личным жизненным опытом;
- самостоятельной работы с источниками информации, анализа, обобщения и систематизации полученной информации, интегрирования ее в личный опыт.

Рабочая программа составлена с учетом требований к результатам обучения, представленных в Федеральном государственном образовательном стандарте среднего образования.

Она определяет содержание и структуру учебного материала, последовательность его изучения, пути формирования системы знаний, умений и способов деятельности, развития, воспитания и социализации учащихся.

Данная программа рассчитана на **408** учебных часа, на два года обучения. На изучение предмета «Математика» выделено 6 часов в неделю: В 10 классе —**204** ч. (6 ч. в неделю, 34 учебных недели), в 11 классе -**204** ч. (6 ч. в неделю, 34 учебные недели). Согласно федеральному базисному учебному плану на изучение математики на профильном уровне в 10 и 11 классе в учебном плане отводится 6 часов в неделю, из которых предусмотрено 4 часа в неделю на изучение курса алгебры и начал математического анализа и 2 часа на изучение геометрии. Для обучения алгебре и началам математического анализа в 10 – 11 классах выбрана содержательная линия А.Г. Мордковича.

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ УЧЕБНОГО ПРЕДМЕТА «МАТЕМАТИКА».

1.1. Личностные результаты:

- ориентация обучающихся на реализацию позитивных жизненных перспектив, инициативность, креативность, готовность и способность к личностному самоопределению, способность ставить цели и строить жизненные планы;
- готовность и способность обучающихся к саморазвитию и самовоспитанию в соответствии с общечеловеческими ценностями и идеалами гражданского общества;
- нравственное сознание и поведение на основе усвоения общечеловеческих ценностей, толерантного сознания и поведения в поликультурном мире, готовности и способности вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения;
- принятие гуманистических ценностей, осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению;
- развитие компетенций сотрудничества со сверстниками, детьми младшего возраста,
 взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности.
- мировоззрение, соответствующее современному уровню развития науки, значимости науки, готовность к научно-техническому творчеству, владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных знаниях об устройстве мира и общества;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- осознанный выбор будущей профессии как путь и способ реализации собственных жизненных планов;

- готовность обучающихся к трудовой профессиональной деятельности как к возможности участия в решении личных, общественных, государственных, общенациональных проблем;
- потребность трудиться, уважение к труду и людям труда, трудовым достижениям, добросовестное, ответственное и творческое отношение к разным видам трудовой деятельности;
 - готовность к самообслуживанию, включая обучение и выполнение домашних обязанностей.
- физическое, эмоционально-психологическое, социальное благополучие обучающихся в жизни образовательной организации, ощущение детьми безопасности и психологического комфорта, информационной безопасности.

1.2. Метапредметные результаты:

Метапредметные результаты освоения основной образовательной программы **представлены тремя группами универсальных учебных действий (УУД)**:

Регулятивные универсальные учебные действия

Выпускник научится:

- самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;
- оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей, основываясь на соображениях этики и морали;
- ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели;
- выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты;
- организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;
 - сопоставлять полученный результат деятельности с поставленной заранее целью.

Познавательные универсальные учебные действия Выпускник научится:

- искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках;
- находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
 - менять и удерживать разные позиции в познавательной деятельности.

Коммуникативные универсальные учебные действия

Выпускник научится:

- осуществлять деловую коммуникацию, как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий;
- при осуществлении групповой работы быть как руководителем, так и членом команды в разных ролях (генератор идей, критик, исполнитель, выступающий, эксперт и т.д.);
- координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;

- развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
- распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы, выстраивать деловую и образовательную коммуникацию, избегая личностных оценочных суждений.

1.3. Предметные результаты учебного предмета «Математика» на углубленном уровне.

По окончании изучения курса выпускник научится:

- понимать значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- понимать значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;
- понимать идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;
- понимать значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;
- понимать возможности геометрии для описания свойств реальных предметов и их взаимного расположения;
- понимать универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;
- понимать различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;
- понимать роль аксиоматики в математике; возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики;
- понимать вероятностных характер различных процессов и закономерностей окружающего мира;

Числовые и буквенные выражения Выпускник научится:

- выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
- применять понятия, связанные с делимостью целых чисел, при решении математических задач;
- находить корни многочленов с одной переменной, раскладывать многочлены на множители;
- выполнять действия с комплексными числами, пользоваться геометрической интерпретацией комплексных чисел, в простейших случаях находить комплексные корни уравнений с действительными коэффициентами;
- проводить преобразования числовых и буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;

Выпускник получит возможность использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;

Функции и графики

Выпускник научится:

- определять значение функции по значению аргумента при различных способах задания функции;
- строить графики изученных функций, выполнять преобразования графиков;
- описывать по графику и по формуле поведение и свойства функций;
- решать уравнения, системы уравнений, неравенства, используя свойства функций и их графические представления;

Выпускник получит возможность использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

описания и исследования с помощью функций реальных зависимостей, представления их графически; интерпретации графиков реальных процессов;

Начала математического анализа

Выпускник научится:

- находить сумму бесконечно убывающей геометрический прогрессии;
- вычислять производные и первообразные элементарных функций, применяя правила вычисления производных и первообразных, используя справочные материалы;
 - исследовать функции и строить их графики с помощью производной;
- решать задачи с применением уравнения касательной к графику функции;
- решать задачи на нахождение наибольшего и наименьшего значения функции на отрезке;
- вычислять площадь криволинейной трапеции;

Выпускник получит возможность использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

решения геометрических, физических, экономических и других прикладных задач, в том числе задач на наибольшие и наименьшие значения с применением аппарата математического анализа;

Уравнения и неравенства

Выпускник научится:

- решать рациональные, показательные и логарифмические уравнения и неравенства, иррациональные и тригонометрические уравнения, их системы;
- доказывать несложные неравенства;
- решать текстовые задачи с помощью составления уравнений, и неравенств, интерпретируя результат с учетом ограничений условия задачи;
- изображать на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.
 - находить приближенные решения уравнений и их систем, используя графический метод;
- решать уравнения, неравенства и системы с применением графических представлений, свойств функций, производной;

Выпускник получит возможность использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

построения и исследования простейших математических моделей;

Элементы комбинаторики, статистики и теории вероятностей Выпускник научится:

- решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул, треугольника Паскаля; вычислять коэффициенты бинома Ньютона по формуле и с использованием треугольника Паскаля;
 - вычислять вероятности событий на основе подсчета числа исходов (простейшие случаи);

Выпускник получит возможность использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

анализа реальных числовых данных, представленных в виде диаграмм, графиков; для анализа информации статистического характера;

Геометрия.

Выпускник научится:

- соотносить плоские геометрические фигуры и трехмерные объекты с их описаниями, чертежами, изображениями; различать и анализировать взаимное расположение фигур;
 - изображать геометрические фигуры и тела, выполнять чертеж по условию задачи;
- решать геометрические задачи, опираясь на изученные свойства планиметрических и стереометрических фигур и отношений между ними, применяя алгебраический и тригонометрический аппарат;
- проводить доказательные рассуждения при решении задач, доказывать основные теоремы курса;
- вычислять линейные элементы и углы в пространственных конфигурациях, объемы и площади поверхностей пространственных тел и их простейших комбинаций;

применять координатно-векторный метод для вычисления отношений, расстояний и углов; строить сечения многогранников и изображать сечения тел врашения:

Выпускник получит возможность использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;

вычисления длин, площадей и объемов реальных объектов при решении практических задач, используя при необходимости справочники и вычислительные устройства.

2. СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА «МАТЕМАТИКА: АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА».

10 класс.

Действительные числа.

Натуральные и целые числа. Делимость чисел. Основная теорема арифметики натуральных чисел. Рациональные, иррациональные, действительные числа, числовая прямая. Числовые неравенства. Аксиоматика действительных чисел. Модуль действительного числа. Метод математической индукции.

Числовые функции

Определение числовой функции и способы ее задания. Свойства функций. Периодические и обратные функции.

Тригонометрические функции

Числовая окружность на координатной плоскости. Определение синуса, косинуса, тангенса и котангенса. Тригонометрические функции числового и углового аргумента, их свойства и графики. Сжатие и растяжение графиков тригонометрических функций. Обратные тригонометрические функции.

Тригонометрические уравнения и неравенства

Простейшие тригонометрические уравнения и неравенства. Методы решения тригонометрических уравнений: метод замены переменной, метод разложения на множители, однородные тригонометрические уравнения.

Преобразование тригонометрических выражений

Формулы сложения, приведения, двойного аргумента, понижения степени. Преобразование суммы тригонометрических функций в произведение и произведения в сумму. Методы решения тригонометрических уравнений (продолжение).

Комплексные числа

Комплексные числа и арифметические операции над ними. Комплексные числа и координатная плоскость. Тригонометрическая форма записи комплексного числа. Комплексные числа и квадратные уравнения. Возведение комплексного числа в степень. Извлечение квадратного и кубического корня из комплексного числа.

Производная

Определение числовой последовательности, способы ее задания и свойства. Предел числовой последовательности, свойства сходящихся последовательностей. Сумма бесконечной геометрической прогрессии. Предел функции на бесконечности и в точке. Задачи, приводящие к понятию производной, определение производной, вычисление производных. Понятие производной п-го порядка. Дифференцирование сложной функции. Дифференцирование обратной функции. Уравнение касательной к графику функции. Применение производной для исследования функций на монотонность и экстремумы. Применение производной для доказательства тождеств и неравенств. Построение графиков функций. Применение производной для отыскания наибольшего и наименьшего значений непрерывной функции на промежутке. Задачи на оптимизацию.

Комбинаторика и вероятность

Правило умножения. Перестановки и факториалы. Выбор нескольких элементов. Сочетания и размещения. Бином Ньютона. Случайные события и их вероятности.

11класс.

Многочлены

Многочлены от одной и нескольких переменных. Теорема Безу. Схема Горнера. Симметрические и однородные многочлены. Уравнения высших степеней.

Степени и корни. Степенные функции

Понятие корня n-й степени из действительного числа. Функция $y = \sqrt[\eta]{\chi}$, ее свойства и график. Свойства корня n-й степени. Обобщение понятия о показателе степени: степень с любым рациональным показателем. Понятие степени с действительным показателем. Свойства степени с рациональными показателями. Преобразование иррациональных выражений. Степенная функция

 $\mathbf{y} = \sqrt[n]{\chi}$ ($\sqrt[n]{\chi}$ -рациональное число), ее свойства (включая формулу дифференцирования) и график.

Показательная и логарифмическая функции

Показательная функция, ее свойства и график. Показательные уравнения и неравенства, Понятие логарифма. Основное логарифмическое тождество. Функция $y = \log_a x$, ее свойства и график. Свойства логарифмов. Логарифмические уравнения и неравенства. Переход к новому основанию логарифма. Дифференцирование показательной и логарифмической функций. Десятичный и натуральный логарифм. Число е.

Интеграл

Первообразная и неопределенный интеграл. Определенный интеграл и его использование для вычисления площадей плоских фигур. Формула Ньютона-Лебница. Применение интеграла в физике и геометрии.

Элементы комбинаторики, статистики и теории вероятностей

Табличное и графическое представление данных. Числовые характеристики рядов данных. Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Треугольник Паскаля. Элементарные и сложные события. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применением вероятностных методов. Вероятность и геометрия. Независимые повторения испытаний с двумя исходами. Статистические методы обработки информации. Гауссова кривая. Закон больших чисел.

Уравнения и неравенства. Системы уравнений неравенств

Равносильность уравнений. Общие методы решения уравнений. Уравнения с модулями. Иррациональные уравнения. Доказательство неравенств. Решение рациональных неравенств с одной переменной. Неравенства с модулями. Иррациональные неравенства. Уравнения и неравенства с двумя переменными. Диофантовы уравнения. Системы уравнений. Уравнения и неравенства.

ГЕОМЕТРИЯ

10 класс.

Предмет стереометрии.

Основные понятия стереометрии (точка, прямая, плоскость, пространство). Аксиомы стереометрии. Некоторые следствия из аксиом.

Параллельность прямых и плоскостей

Параллельность прямых, прямой и плоскости. Взаимное расположение двух прямых в пространстве. Угол между двумя прямыми. Параллельность плоскостей. Тетраэдр и параллелепипед.

Перпендикулярность прямых и плоскостей

Перпендикулярность прямой и плоскости. Перпендикуляр и наклонные. Угол между прямой и плоскостью. Двугранный угол. Перпендикулярность плоскостей. Трехгранный угол. Многогранный угол.

Многогранники

Понятие многогранника. Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Правильные многогранники. Теорема Эйлера. Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призма. Правильная призма.

Параллелепипед. Куб. Пирамида. Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.

Симметрии в кубе, в параллелепипеде, в призме и пирамиде.

Понятие о симметрии в пространстве (центральная, осевая, зеркальная).

Сечения многогранников. Построение сечений.

Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

11 класс.

Векторы в пространстве. Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы.

Метод координат в пространстве. Движения.

Координаты точки и координаты вектора. Скалярное произведениевекторов. Уравнение плоскости. Движения.Преобразование подобия.

Цилиндр, конус, шар.

Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса. Площадь поверхности конуса. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения параллельные основанию. Сфера и шар. Уравнение сферы. Взаимное расположение сферы и плоскости. Касательная плоскость к сфере. Площадь сферы.

Эллипс, гипербола, парабола как сечения конуса. Касательная плоскость к сфере. Сфера, вписанная в многогранник, сфера, описанная около многогранника.

Цилиндрические и конические поверхности.

Объемы тел.

Объем прямоугольного параллелепипеда. Объемы прямой призмы и цилиндра. Объемы наклонной призмы, пирамиды и конуса. Объем шара и площадь сферы. Объемы шарового сегмента, шарового слоя и шарового сектора.

Некоторые сведения из планиметрии.

Углы и отрезки, связанные с окружностью. Решение треугольников. Теоремы Менелая и Чевы.

2. ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ УЧЕБНОГО ПРЕДМЕТА «МАТЕМАТИКА» 10 класс

No	Наименование разделов	Количество
п/п	-	часов
1.	Повторение материала 7-9 класса.	5
2.	Действительные числа.	12
3.	Числовые функции	10
4.	Предмет стереометрии. Аксиомы стереометрии. Некоторые	23
	следствия из аксиом. Параллельность прямых и плоскостей.	
5.	Тригонометрические функции.	24
6.	Перпендикулярность прямых и плоскостей.	15
7.	Тригонометрические уравнения и неравенства.	10
8.	Многогранники.	11
9.	Преобразование тригонометрических выражений.	21
10.	Векторы в пространстве.	7
11.	Комплексные числа.	9
12.	Производная.	30
13.	Комбинаторика и вероятность.	8
14.	Повторение курса 10 класса.	19
	Bcero	204

11 класс

№	Наименование разделов	Количество
п/п		часов

1.	Повторение .	6
2.	Степени и корни. Степенные функции	21
3.	Метод координат в пространстве.	23
4.	Цилиндр, конус, шар.	13
5.	Показательная и логарифмическая функции.	29
6.	Объемы тел.	22
7.	Первообразная и интеграл.	9
8.	Уравнения и неравенства. Системы уравнений и неравенств.	35
9.	Элементы комбинаторики, статистики и теории вероятностей.	9
10.	Многочлены	10
11.	Повторение.	26
12.	Всего	204

В целях индивидуализации и дифференциации процесса обучения, организации распределенной проектной деятельности обучающихся предлагаются примерные темы исследовательских проектов:

- 1. Функции, с которыми мы встречаемся при обучении в основной школе.
- 2. Словесный способ задания функции. Функции y=[x] и y=[x].
- 3. Аналитически заданные функции с помощью знака модуля.
- 4. Функционально-графические методы решения уравнений.
- 5. Замечательное число π .
- 6. Занимательные задачи о часах с одной двумя стрелками.
- 7. Построение графиков, связанных с обратными тригонометрическими функциями.
- 8. Уравнения и неравенства с обратными тригонометрическими функциями.
- 9. Разработка мультимедиа пособия по теме «простейшие тригонометрические уравнения».
- 10. Применения тригонометрии в астрономии, географии, геодезии, медицине, биологии и т.д.
- 11. Применение тригонометрии для решения планиметрических задач.
- 12. Площадь треугольника и формулы сложения.
- 13. Уравнение движения маятника и его характеристики: период, частота, амплитуда.
- 14. Производная в экономике. Производительность как производная объёма продукции.
- 15. Касательная к параболе или эллипсу с помощью циркуля и линейки.
- 16. Дифференцирование сложной функции.
- 17. Почему корень n-ой степени из натурального числа есть число или натуральное, или иррациональное?
- 18. Показательные функции в окружающем мире.
- 19. Замечательное число е.
- 20. История возникновения логарифмов.
- 21. История создания интегрального исчисления.
- 22. Применения интегралов в различных областях знаний: астрономии, географии, геодезии, медицине и т.д.
- 23. Вычисление объёмов и площадей поверхности тел вращения при помощи определённого интеграла.
- 24. Применение интегралов при решении простейших дифференциальных уравнений.
- 25. Статистика о нашем классе.
- 26. Симметричные и несимметричные деревья вариантов.
- 27. Задачи о независимых и несовместных событиях.
- 28. Диофантовы уравнения.
- 29. Теория решения иррациональных неравенств.
- 30. Обобщённый метод интервалов и метод рационализации (замены множителей) при решении неравенств.
- 31. Геометрические и функционально-графические подходы к исследованию решений уравнений и их систем.